Depths inferred from velocities estimated by remote sensing: A flow resistance equation-based approach to mapping multiple river attributes at the reach scale
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 22
2021
- 4Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Remote sensing of flow conditions in stream channels could facilitate hydrologic data collection, particularly in large, inaccessible rivers. Previous research has demonstrated the potential to estimate flow velocities in sediment-laden rivers via particle image velocimetry (PIV). In this study, we introduce a new framework for also obtaining bathymetric information: Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS). This approach is based on a flow resistance equation and involves several assumptions: steady, uniform, one-dimensional flow and a direct proportionality between the velocity estimated at a given location and the local water depth, with no lateral transfer of mass or momentum. As an initial case study, we performed PIV and inferred depths from videos acquired from a helicopter hovering at multiple waypoints along a large river in central Alaska. The accuracy of PIV-derived velocities was assessed via comparison to field measurements and the performance of an optimization-based approach to DIVERS was quantified by comparing calculated depths to those observed in the field. We also examined the ability of two variants of DIVERS to reproduce the discharge recorded at a gaging station. This analysis indicated that the accuracy of PIV-based velocity estimates varied considerably from hover to hover along the reach, with observed vs. predicted R values ranging from 0.22 to 0.97 and a median of 0.57. Calculated depths were also reasonably accurate, with median normalized biases from −4% to 9.9% for the two versions of DIVERS, but tended to be under-predicted in meander bends. Discharges were reproduced to within 1% and 4% when applying the optimization-based technique to individual hovers or reach-aggregated data, respectively. The results of this investigation suggest that, in addition to the velocity field derived via PIV, DIVERS could provide a plausible, first-order approximation to the reach-scale bathymetry. This framework could be refined by incorporating hydraulic processes that were not represented in the initial iteration of the approach described herein.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know