An Integrated Model of Summer and Winter for Chlorophyll-a Retrieval in the Pearl River Estuary Based on Hyperspectral Data
Remote Sensing, ISSN: 2072-4292, Vol: 14, Issue: 9
2022
- 8Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Chlorophyll-a (Chla) is an important parameter for water quality. For remote sensingbased methods for the measurement of Chla, in-situ hyperspectral data is crucial for building retrieval models. In the Pearl River Estuary, we used 61 groups of in-situ hyperspectral data and corresponding Chla concentrations collected in July and December 2020 to build a Chla retrieval model that takes the two different seasons and the turbidity of water into consideration. The following results were obtained. (1) Based on the pre-processing techniques for hyperspectral data, it was shown that the first-derivative of 680 nm is the optimal band for the estimation of Chla in the Pearl River Estuary, with R2 > 0.8 and MAPE of 26.03%. (2) To overcome the spectral resolution problem in satellite image retrieval, based on the simulated reflectance from the Sentinel-2 satellite and the shape of the discrete spectral curve, we constructed a multispectral model using the slope difference index method, which reached a R2 of 0.78 and MAPE of 35.21% and can integrate the summer and winter data. (3) The slope difference method applied to the Sentinel-2 image shows better performance than the red-NIR ratio method. Therefore, the method proposed in this paper is practicable for Chla monitoring of coastal waters based on both in-situ data and images.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know