Chinese High Resolution Satellite Data and GIS-Based Assessment of Landslide Susceptibility along Highway G30 in Guozigou Valley Using Logistic Regression and MaxEnt Model
Remote Sensing, ISSN: 2072-4292, Vol: 14, Issue: 15
2022
- 25Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Landslide disasters frequently occur along the highway G30 in the Guozigou Valley, the corridor of energy, material, economic and cultural exchange, etc., between Yili and other cities of China and Central Asia. However, little attention has been paid to assess the detailed landslide susceptibility of the strategically important highway, especially with high spatial resolution data and the generative presence-only MaxEnt model. Landslide susceptibility assessment (LSA) is a first and vital step for preventing and mitigating landslide hazards. The goal of the current study was to perform LSA for the landslide-prone highway G30 in Guozigou Valley, China with the aid of GIS tools and Chinese high resolution Gaofen-1 (GF-1) satellite data, and analyze and compare the performance of the maximum entropy (MaxEnt) model and logistic regression (LR). Thirty five landslides were determined in the study region, using GF-1 satellite data, official data, and field surveys. Seven landslide conditioning factors, including altitude, slope, aspect, gully density, lithology, faults density, and NDVI, were used to investigate their existing spatial relationships with landslide occurrences. The LR and MaxEnt model performance were assessed by the receiver operating characteristic curve, presenting areas under the curve equal to 0.85 and 0.94, respectively. The performance of the MaxEnt model was slightly better than that of the LR model. A landslide susceptibility map was created through reclassifying the landslides occurrence probability with the classification method of natural breaks. According to the MaxEnt model results, 3.29% and 3.82% of the study region is highly and very highly susceptible to future landslide events, respectively, with the highest landslide susceptibility along the highway. The generated landslide susceptibility map could help government agencies and decision-makers to make wise decisions for preventing or mitigating landslide hazards along the highway and design schemes of highway engineering and maintenance in Guozigou Valley, the mountainous areas.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know