Evaluation of Remote Sensing-Based Evapotranspiration Datasets for Improving Hydrological Model Simulation in Humid Region of East China
Remote Sensing, ISSN: 2072-4292, Vol: 14, Issue: 18
2022
- 8Citations
- 21Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Remote Sensing, Vol. 14, Pages 4546: Evaluation of Remote Sensing-Based Evapotranspiration Datasets for Improving Hydrological Model Simulation in Humid Region of East China
Remote Sensing, Vol. 14, Pages 4546: Evaluation of Remote Sensing-Based Evapotranspiration Datasets for Improving Hydrological Model Simulation in Humid Region of East China Remote Sensing
Article Description
Conventional calibration methods used in hydrological modelling are based on runoff observations at the basin outlet. However, calibration with only runoff often produces reasonable runoff but poor results for other hydrological variables. Multi-variable calibration with both runoff and remote sensing-based evapotranspiration (ET) is developed naturally, due to the importance of ET and its data availability. This study compares two main calibration schemes: (1) calibration with only runoff (Scheme I) and (2) multi-variable calibration with both runoff and remote sensing-based ET (Scheme II). ET data are obtained from three remote sensing-based ET datasets, namely Penman–Monteith–Leuning (PML), FLUXCOM, and the Global Land Evaporation Amsterdam Model (GLEAM). The aforementioned calibration schemes are applied to calibrate the parameters of the Distributed Hydrology Soil Vegetation Model (DHSVM) through ε-dominance non-dominated sorted genetic algorithm II (ε-NSGAII). The results show that all three ET datasets have good performance for areal ET in the study area. The DHSVM model calibrated based on Scheme I produces acceptable performance in runoff simulation (Kling–Gupta Efficiency, KGE = 0.87), but not for ET simulation (KGE < 0.7). However, reasonable simulations can be achieved for both variables based on Scheme II. The KGE value of runoff simulation can reach 0.87(0.91), 0.72(0.85), and 0.75(0.86) in the calibration (validation) period based on Scheme II (PML), Scheme II (FLUXCOM), and Scheme II (GLEAM), respectively. Simultaneously, ET simulations are greatly improved both in the calibration and validation periods. Furthermore, incorporating ET data into all three Scheme II variants is able to improve the performance of extreme flow simulations (including extreme low flow and high flow). Based on the improvement of the three datasets in extreme flow simulations, PML can be utilized for multi-variable calibration in drought forecasting, and FLUXCOM and GLEAM are good choices for flood forecasting.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know