Swin-Transformer-YOLOv5 for Real-Time Wine Grape Bunch Detection
Remote Sensing, ISSN: 2072-4292, Vol: 14, Issue: 22
2022
- 38Citations
- 46Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Guangxi Normal University Researchers Provide New Study Findings on Remote Sensing (Swin-Transformer-YOLOv5 for Real-Time Wine Grape Bunch Detection)
2022 DEC 12 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Data detailed on remote sensing have been presented. According
Article Description
Precise canopy management is critical in vineyards for premium wine production because maximum crop load does not guarantee the best economic return for wine producers. The growers keep track of the number of grape bunches during the entire growing season for optimizing crop load per vine. Manual counting of grape bunches can be highly labor-intensive and error prone. Thus, an integrated, novel detection model, Swin-transformer-YOLOv5, was proposed for real-time wine grape bunch detection. The research was conducted on two varieties of Chardonnay and Merlot from July to September 2019. The performance of Swin-T-YOLOv5 was compared against commonly used detectors. All models were comprehensively tested under different conditions, including two weather conditions, two berry maturity stages, and three sunlight intensities. The proposed Swin-T-YOLOv5 outperformed others for grape bunch detection, with mean average precision (mAP) of up to 97% and F1-score of 0.89 on cloudy days. This mAP was ~44%, 18%, 14%, and 4% greater than Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5, respectively. Swin-T-YOLOv5 achieved an R of 0.91 and RMSE of 2.4 (number of grape bunches) compared with the ground truth on Chardonnay. Swin-T-YOLOv5 can serve as a reliable digital tool to help growers perform precision canopy management in vineyards.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know