Ground Deformation Monitoring over Xinjiang Coal Fire Area by an Adaptive ERA5-Corrected Stacking-InSAR Method
Remote Sensing, ISSN: 2072-4292, Vol: 15, Issue: 5
2023
- 5Citations
- 12Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Remote Sensing Research from China University of Mining and Technology Discussed (Ground Deformation Monitoring over Xinjiang Coal Fire Area by an Adaptive ERA5-Corrected Stacking-InSAR Method)
2023 MAR 29 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Current study results on remote sensing have been published.
Article Description
Underground coal fire is a global geological disaster that causes the loss of resources as well as environmental pollution. Xinjiang, China, is one of the regions suffering from serious underground coal fires. The accurate monitoring of underground coal fires is critical for management and extinguishment, and many remote sensing-based approaches have been developed for monitoring over large areas. Among them, the multi-temporal interferometric synthetic aperture radar (MT-InSAR) techniques have been recently employed for underground coal fires-related ground deformation monitoring. However, MT-InSAR involves a relatively high computational cost, especially when the monitoring area is large. We propose to use a more cost-efficient Stacking-InSAR technique to monitor ground deformation over underground coal fire areas in this study. Considering the effects of atmosphere on Stacking-InSAR, an ERA5 data-based estimation model is employed to mitigate the atmospheric phase of interferograms before stacking. Thus, an adaptive ERA5-Corrected Stacking-InSAR method is proposed in this study, and it is tested over the Fukang coal fire area in Xinjiang, China. Based on original and corrected interferograms, four groups of ground deformation results were obtained, and the possible coal fire areas were identified. In this paper, the ERA5 atmospheric delay products based on the estimation model along the LOS direction (D-LOS) effectively mitigate the atmospheric phase. The accuracy of ground deformation monitoring over a coal fire area has been improved by the proposed method choosing interferograms adaptively for stacking. The proposed Adaptive ERA5-Corrected Stacking-InSAR method can be used for efficient ground deformation monitoring over large coal fire areas.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know