Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction
Remote Sensing, ISSN: 2072-4292, Vol: 16, Issue: 3
2024
- 3Citations
- 54Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Remote Sensing, Vol. 16, Pages 438: Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction
Remote Sensing, Vol. 16, Pages 438: Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction Remote Sensing doi: 10.3390/rs16030438 Authors:
Most Recent News
New Remote Sensing Study Findings Recently Were Published by a Researcher at University of Tubingen (Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction)
2024 FEB 08 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Data detailed on remote sensing have been presented. According
Article Description
Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revealing its patterns across different ecosystems. However, despite these advances, the intricacies of training reliable and yet certain SOC models for specific end-users remain a great challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we introduce a methodology that leverages conformal prediction to address the uncertainty in estimating SOC contents while using remote sensing data. Conformal prediction generates statistically reliable uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the efficacy of integrating conformal prediction with another ML model, specifically random forest. In addition, we conducted a comparative assessment of our results against prevalent uncertainty quantification methods for SOC prediction, employing different evaluation metrics to assess both model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction sets as informative indicators of uncertainty. These sets accurately identify samples that pose prediction challenges, providing valuable insights for end-users seeking reliable predictions in the complexities of SOC estimation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know