Reweighted Extreme Learning Machine-Based Clutter Suppression and Range Compensation Algorithm for Non-Side-Looking Airborne Radar
Remote Sensing, ISSN: 2072-4292, Vol: 16, Issue: 6
2024
- 2Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Mentions1
- News Mentions1
- 1
Most Recent News
Findings from Xidian University Provide New Insights into Remote Sensing (Reweighted Extreme Learning Machine-Based Clutter Suppression and Range Compensation Algorithm for Non-Side-Looking Airborne Radar)
2024 APR 09 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- New study results on remote sensing have been published.
Article Description
Non-side-looking airborne radar provides important applications on account of its all-round multi-angle airspace coverage. However, it suffers clutter range dependence that makes the samples fail to satisfy the condition of being independent and identically distributed (IID), and it severely degrades traditional approaches to clutter suppression and target detection. In this paper, a novel reweighted extreme learning machine (ELM)-based clutter suppression and range compensation algorithm is proposed for non-side-looking airborne radar. The proposed method involves first designing the pre-processing stage, the special reweighted complex-valued activation function containing an unknown range compensation matrix, and two new objective outputs for constructing an initial reweighted ELM-based network with its training. Then, two other objective outputs, a new loss function, and a reverse feedback framework driven by the specifically designed objectives are proposed for the unknown range compensation matrix. Finally, aiming to estimate and reconstruct the unknown compensation matrix, special processes of the complex-valued structures and the theoretical derivations are designed and analyzed in detail. Consequently, with the updated and compensated samples, further processing including space–time adaptive processing (STAP) can be performed for clutter suppression and target detection. Compared with the classic relevant methods, the proposed algorithm achieves significantly superior performance with reasonable computation time. It provides an obviously higher detection probability and better improvement factor (IF). The simulation results verify that the proposed algorithm is effective and has many advantages.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know