PlumX Metrics
Embed PlumX Metrics

Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance (LSPR)

Sensors, ISSN: 1424-8220, Vol: 10, Issue: 3, Page: 2045-2053
2010
  • 35
    Citations
  • 0
    Usage
  • 27
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

An enzymatic reaction was employed as a means to enhance the sensitivity of an immunosensor based on localized surface plasmon resonance (LSPR). The reaction occurs after intermolecular binding between an antigen and an antibody on gold nano-island (NI) surfaces. For LSPR sensing, the gold NI surface was fabricated on glass substrates using vacuum evaporation and heat treatment. The interferon-γ(IFN-γ) capture antibody was immobilized on the gold NIs, followed by binding of IFN-γ to the antibody. Subsequently, a biotinylated antibody and a horseradish peroxidase (HRP) conjugated with avidin were simultaneously introduced. A solution of 4-chloro-1-naphthol (4-CN) was then used for precipitation; precipitation was the result of the enzymatic reaction catalyzed the HRP on gold NIs. The LSPR spectra were obtained after each binding process. Using this method, the enzyme-catalyzed precipitation reaction on the gold NI surface was found to effectively amplify the change in the signal of the LSPR immunosensor after intermolecular binding. © 2010 by the authors.

Bibliographic Details

Lee, Tae-Han; Lee, Seung-Woo; Jung, Ji-Ae; Ahn, Junhyoung; Kim, Min-Gon; Shin, Yong-Beom

MDPI AG

Chemistry; Computer Science; Physics and Astronomy; Biochemistry, Genetics and Molecular Biology; Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know