Activities of daily living ontology for ubiquitous systems: Development and evaluation
Sensors (Switzerland), ISSN: 1424-8220, Vol: 18, Issue: 7
2018
- 17Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef11
- Captures51
- Readers51
- 51
Article Description
Ubiquitous eHealth systems based on sensor technologies are seen as key enablers in the effort to reduce the financial impact of an ageing society. At the heart of such systems sit activity recognition algorithms, which need sensor data to reason over, and a ground truth of adequate quality used for training and validation purposes. The large set up costs of such research projects and their complexity limit rapid developments in this area. Therefore, information sharing and reuse, especially in the context of collected datasets, is key in overcoming these barriers. One approach which facilitates this process by reducing ambiguity is the use of ontologies. This article presents a hierarchical ontology for activities of daily living (ADL), together with two use cases of ground truth acquisition in which this ontology has been successfully utilised. Requirements placed on the ontology by ongoing work are discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know