On the influence of infra-red sensor in the accurate estimation of grinding temperatures
Sensors (Switzerland), ISSN: 1424-8220, Vol: 18, Issue: 12
2018
- 12Citations
- 27Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef11
- Captures27
- Readers27
- 27
- Mentions1
- Blog Mentions1
- Blog1
Article Description
Workpiece rejection originated by thermal damage is of great concern in high added-value industries, such as automotive or aerospace. Surface temperature control is vital to avoid this kind of damage. Difficulties in empirical measurement of surface temperatures in-process imply the measurement in points other than the ground surface. Indirect estimation of temperatures demands the use of thermal models. Among the numerous temperature measuring techniques, infra-red measurement devices excel for their speed and accurate measurements. With all of this in mind, the current work presents a novel temperature estimation system, capable of accurate measurements below the surface as well as correct interpretation and estimation of temperatures. The estimation system was validated by using a series of tests in different grinding conditions that confirm the hypotheses of the error made when measuring temperatures in the workpiece below the surface in grinding. This method provides a flexible and precise way of estimating surface temperatures in grinding processes and has shown to reduce measurement error by up to 60%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know