Interactive, multiscale urban-traffic pattern exploration leveraging massive gps trajectories
Sensors (Switzerland), ISSN: 1424-8220, Vol: 20, Issue: 4
2020
- 13Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef11
- Captures36
- Readers36
- 36
Article Description
Urban traffic pattern reflects how people move and how goods are transported, which is crucial for traffic management and urban planning. With the development of sensing techniques, accumulated sensor data are captured for monitoring vehicles, which also present the opportunities of big transportation data, especially for real-time interactive traffic pattern analysis. We propose a three-layer framework for the recognition and visualization of multiscale traffic patterns. The first layer computes the middle-tier synopses at fine spatial and temporal scales, which are indexed and stored in a geodatabase. The second layer uses synopses to efficiently extract multiscale traffic patterns. The third layer supports real-time interactive visual analytics for intuitive explorations by end users. An experiment in Shenzhen on taxi GPS trajectories that were collected over one month was conducted. Multiple traffic patterns are recognized and visualized in real-time. The results show the satisfactory performance of proposed framework in traffic analysis, which will facilitate traffic management and operation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know