Improving real-time position estimation using correlated noise models
Sensors (Switzerland), ISSN: 1424-8220, Vol: 20, Issue: 20, Page: 1-14
2020
- 5Citations
- 5Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef5
- Captures5
- Readers5
- Mentions1
- Blog Mentions1
- Blog1
Article Description
We provide algorithms for inferring GPS (Global Positioning System) location and for quantifying the uncertainty of this estimate in real time. The algorithms are tested on GPS data from locations in the Southern Hemisphere at four significantly different latitudes. In order to rank the algorithms, we use the so-called log-score rule. The best algorithm uses an Ornstein–Uhlenbeck (OU) noise model and is built on an enhanced Kalman Filter (KF). The noise model is capable of capturing the observed autocorrelated process noise in the altitude, latitude and longitude recordings. This model outperforms a KF that assumes a Gaussian noise model, which under-reports the position uncertainties. We also found that the dilution-of-precision parameters, automatically reported by the GPS receiver at no additional cost, do not help significantly in the uncertainty quantification of the GPS positioning. A non-learning method using the actual position measurements and employing a constant uncertainty does not even converge to the correct position. Inference with the enhanced noise model is suitable for embedded computing and capable of achieving real-time position inference, can quantify uncertainty and be extended to incorporate complementary sensor recordings, e.g., from an accelerometer or from a magnetometer, in order to improve accuracy. The algorithm corresponding to the augmented-state unscented KF method suggests a computational cost of O(dxd ), where d is the dimension of the augmented state-vector and d is an adjustable, design-dependent parameter corresponding to the length of “past values” one wishes to keep for re-evaluation of the model from time to time. The provided algorithm assumes d = 1. Hence, the algorithm is likely to be suitable for sensor fusion applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know