Enhanced quarter spherical acoustic energy harvester based on dual helmholtz resonators
Sensors (Switzerland), ISSN: 1424-8220, Vol: 20, Issue: 24, Page: 1-14
2020
- 8Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Letter Description
An enhanced quarter-spherical acoustic energy harvester (AEH) with dual Helmholtz resonators was designed in this work. Compared with the previous research, this AEH can harvest multi-directional acoustic energy, has a widened resonance frequency band, and has an improved energy conversion efficiency. When the length of resonator’s neck is changed, the acoustic resonant frequency of the two resonators is different. The theoretical models of output voltage and output power were studied, and the relationship of output performance with frequency was obtained. The results showed that this AEH can operate efficiently in a frequency band of about 470 Hz. Its output voltage was found to be about 28 mV, and its output power was found to be about 0.05 µW. The power density of this AEH was found to be about 12.7 µW/cm. Therefore, this AEH could be widely used in implantable medical devices such as implantable cardiac pacemakers, cochlear implants, and retinal prosthesis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know