Evm loss: A loss function for training neural networks in communication systems
Sensors (Switzerland), ISSN: 1424-8220, Vol: 21, Issue: 4, Page: 1-9
2021
- 3Citations
- 9Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures9
- Readers9
- Mentions1
- Blog Mentions1
- Blog1
Article Description
Neural networks and their application in communication systems are receiving growing attention from both academia and industry. The authors note that there is a disconnect between the typical objective functions of these neural networks with regards to the context in which the neural network will eventually be deployed and evaluated. To this end, a new loss function is proposed and shown to increase the performance of neural networks when implemented in a communication system compared to previous methods. It is further shown that a ‘split complex’ approach used by many implementations can be improved via formalisation of the ‘concatenated complex’ approach described herein. Experimental results using the orthogonal frequency division multiplexing (OFDM) and spectrally efficient frequency division multiplexing (SEFDM) modulation formats with varying bandwidth compression factors over a wireless visible light communication (VLC) link validate the efficacy of the proposed method in a real system, achieving the lowest error vector magnitude (EVM), and thus bit error rate (BER), across all experiments, with a 5 dB to 10 dB improvement in the received symbols EVM overall compared to the baseline implementation, with bandwidth compressions down to 40% compared to OFDM, resulting in a spectral efficiency gain of 67%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know