Towards the design and implementation of an image-based navigation system of an autonomous underwater vehicle combining a color recognition technique and a fuzzy logic controller
Sensors, ISSN: 1424-8220, Vol: 21, Issue: 12
2021
- 16Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef14
- Captures15
- Readers15
- 15
Article Description
This study proposes the development of an underwater object-tracking control system through an image-processing technique. It is used for the close-range recognition and dynamic tracking of autonomous underwater vehicles (AUVs) with an auxiliary light source for image processing. The image-processing technique includes color space conversion, target and background separation with binarization, noise removal with image filters, and image morphology. The image-recognition results become more complete through the aforementioned process. After the image information is obtained for the underwater object, the image area and coordinates are further adopted as the input values of the fuzzy logic controller (FLC) to calculate the rudder angle of the servomotor, and the propeller revolution speed is defined using the image information. The aforementioned experiments were all conducted in a stability water tank. Subsequently, the FLC was combined with an extended Kalman filter (EKF) for further dynamic experiments in a towing tank. Specifically, the EKF predicts new coordinates according to the original coordinates of an object to resolve data insufficiency. Consequently, several tests with moving speeds from 0.2 m/s to 0.8 m/s were analyzed to observe the changes in the rudder angles and the sensitivity of the propeller revolution speed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know