Screen-shooting resilient watermarking scheme via learned invariant keypoints and QT
Sensors, ISSN: 1424-8220, Vol: 21, Issue: 19
2021
- 21Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef16
- Captures5
- Readers5
Article Description
This paper proposes a screen-shooting resilient watermarking scheme via learned invariant keypoints and QT; that is, if the watermarked image is displayed on the screen and captured by a camera, the watermark can be still extracted from the photo. A screen-shooting resilient watermarking algorithm should meet the following two basic requirements: robust keypoints and a robust watermark algorithm. In our case, we embedded watermarks by combining the feature region filtering model to SuperPoint (FRFS) neural networks, quaternion discrete Fourier transform (QDFT), and tensor decomposition (TD). First we applied FRFS to locate the embedding feature regions which are decided by the keypoints that survive screen-shooting. Second, we structured watermark embedding regions centered at keypoints. Third, the watermarks were embedded by the QDFT and TD (QT) algorithm, which is robust for capturing process attacks. In a partial shooting scenario, the watermark is repeatedly embedded into different regions in an image to enhance robustness. Finally, we extracted the watermarks from at least one region at the extraction stage. The experimental results showed that the proposed scheme is very robust for camera shooting (including partial shooting) different shooting scenarios, and special attacks. Moreover, the efficient mechanism of screen-shooting resilient watermarking could have propietary protection and leak tracing applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know