Ship Segmentation and Georeferencing from Static Oblique View Images
Sensors, ISSN: 1424-8220, Vol: 22, Issue: 7
2022
- 14Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Camera systems support the rapid assessment of ship traffic at ports, allowing for a better perspective of the maritime situation. However, optimal ship monitoring requires a level of automation that allows personnel to keep track of relevant variables in the maritime situation in an un-derstandable and visualisable format. It therefore becomes important to have real-time recognition of ships present at the infrastructure, with their class and geographic position presented to the maritime situational awareness operator. This work presents a novel dataset, ShipSG, for the segmentation and georeferencing of ships in maritime monitoring scenes with a static oblique view. Moreover, an exploration of four instance segmentation methods, with a focus on robust (Mask-RCNN, DetectoRS) and real-time performances (YOLACT, Centermask-Lite) and their generalisation to other existing maritime datasets, is shown. Lastly, a method for georeferencing ship masks is proposed. This includes an automatic calculation of the pixel of the segmented ship to be georeferenced and the use of a homography to transform this pixel to geographic coordinates. DetectoRS provided the highest ship segmentation mAP of 0.747. The fastest segmentation method was Centermask-Lite, with 40.96 FPS. The accuracy of our georeferencing method was (22 ± 10) m for ships detected within a 400 m range, and (53 ± 24) m for ships over 400 m away from the camera.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know