A Comparison among Different Strategies to Detect Potential Unstable Behaviors in Postural Sway
Sensors, ISSN: 1424-8220, Vol: 22, Issue: 19
2022
- 6Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Assistive Technology helps to assess the daily living and safety of frail people, with particular regards to the detection and prevention of falls. In this paper, a comparison is provided among different strategies to analyze postural sway, with the aim of detecting unstable postural status in standing condition as precursors of potential falls. Three approaches are considered: (i) a time-based features threshold algorithm, (ii) a time-based features Neuro-Fuzzy inference system, and (iii) a Neuro-Fuzzy inference fed by Discrete-Wavelet-Transform-based features. The analysis was performed across a wide dataset and exploited performance indexes aimed at assessing the accuracy and the reliability of predictions provided by the above-mentioned strategies. The results obtained demonstrate valuable performances of the three considered strategies in correctly distinguishing among stable and unstable postural status. However, the analysis of robustness against noisy data highlights better performance of Neuro-Fuzzy inference systems with respect to the threshold-based algorithm.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know