EMS: Efficient Monitoring System to Detect Non-Cooperative Nodes in IoT-Based Vehicular Delay Tolerant Networks (VDTNs)
Sensors, ISSN: 1424-8220, Vol: 23, Issue: 1
2023
- 11Citations
- 7Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Sensors, Vol. 23, Pages 99: EMS: Efficient Monitoring System to Detect Non-Cooperative Nodes in IoT-Based Vehicular Delay Tolerant Networks (VDTNs)
Sensors, Vol. 23, Pages 99: EMS: Efficient Monitoring System to Detect Non-Cooperative Nodes in IoT-Based Vehicular Delay Tolerant Networks (VDTNs) Sensors doi: 10.3390/s23010099 Authors: Ghani
Article Description
Since several Internet of Things (IoT) applications have been widely deployed on unstable wireless networks, such as the Delay Tolerant Network (DTN), data communication efficiency in DTN remains a challenge for IoT applications. Vehicular Delay Tolerant Network (VDTN) has become one of DTN’s potential applications, in which the network experiences connectivity interruption due to the lack of an end-to-end relay route. VDTNs focus on node cooperation to achieve this goal. As a result, it is essential to ensure that almost all network nodes adopt the protocol to preserve network performance. This is a challenging task since nodes may diverge from the basic protocol to optimize their effectiveness. This article presents an Efficient Monitoring System (EMS) to detect and respond to just selfish nodes to minimize their entire network and data communication efficacy. The scheme is based on a network-wide cooperative sharing of node reputation. It is also necessary to increase overall network efficiency by tracking selfish nodes. The NS-2 simulator is used to run this experimental setup. Simulation results indicate that the proposed scheme performs better in terms of probability of package delivery, package delivery delay, energy consumption, and amount of packet drops. For 80% selfish nodes in the network, the packet delivery of EMS is 37% and 31% better than SOS and IPS. Similarly, the average delivery delay of EMS is 22% and 18% lower than SOS and IPS when 80% selfish nodes are incorporated in the network.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know