Malaria Detection Using Advanced Deep Learning Architecture
Sensors, ISSN: 1424-8220, Vol: 23, Issue: 3
2023
- 50Citations
- 112Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- Captures112
- Readers112
- 112
Article Description
Malaria is a life-threatening disease caused by parasites that are transmitted to humans through the bites of infected mosquitoes. The early diagnosis and treatment of malaria are crucial for reducing morbidity and mortality rates, particularly in developing countries where the disease is prevalent. In this article, we present a novel convolutional neural network (CNN) architecture for detecting malaria from blood samples with a 99.68% accuracy. Our method outperforms the existing approaches in terms of both accuracy and speed, making it a promising tool for malaria diagnosis in resource-limited settings. The CNN was trained on a large dataset of blood smears and was able to accurately classify infected and uninfected samples with high sensitivity and specificity. Additionally, we present an analysis of model performance on different subtypes of malaria and discuss the implications of our findings for the use of deep learning in infectious disease diagnosis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know