Advanced Noise Indicator Mapping Relying on a City Microphone Network
Sensors, ISSN: 1424-8220, Vol: 23, Issue: 13
2023
- 3Citations
- 8Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Ghent University Researcher Updates Understanding of Sensor Research (Advanced Noise Indicator Mapping Relying on a City Microphone Network)
2023 JUL 06 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Investigators publish new report on sensor research. According to
Article Description
In this work, a methodology is presented for city-wide road traffic noise indicator mapping. The need for direct access to traffic data is bypassed by relying on street categorization and a city microphone network. The starting point for the deterministic modeling is a previously developed but simplified dynamic traffic model, the latter necessary to predict statistical and dynamic noise indicators and to estimate the number of noise events. The sound propagation module combines aspects of the CNOSSOS and QSIDE models. In the next step, a machine learning technique—an artificial neural network in this work—is used to weigh the outcomes of the deterministic predictions of various traffic parameter scenarios (linked to street categories) to approach the measured indicators from the microphone network. Application to the city of Barcelona showed that the differences between predictions and measurements typically lie within 2–3 dB, which should be positioned relative to the 3 dB variation in street-side measurements when microphone positioning relative to the façade is not fixed. The number of events is predicted with 30% accuracy. Indicators can be predicted as averages over day, evening and night periods, but also at an hourly scale; shorter time periods do not seem to negatively affect modeling accuracy. The current methodology opens the way to include a broad set of noise indicators in city-wide environmental noise impact assessment.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know