Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning †
Sensors, ISSN: 1424-8220, Vol: 24, Issue: 6
2024
- 14Citations
- 45Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- Captures45
- Readers45
- 45
- Mentions2
- Blog Mentions1
- 1
- News Mentions1
- 1
Most Recent Blog
Sensors, Vol. 24, Pages 1913: Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning
Sensors, Vol. 24, Pages 1913: Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning Sensors doi: 10.3390/s24061913 Authors: Oleksandr Melnychenko Lukasz Scislo
Most Recent News
Study Findings on Sensor Research Reported by a Researcher at Khmelnytskyi National University (Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning)
2024 MAR 28 (NewsRx) -- By a News Reporter-Staff News Editor at Agriculture Daily -- Research findings on sensor research are discussed in a new
Article Description
In the context of Industry 4.0, one of the most significant challenges is enhancing efficiency in sectors like agriculture by using intelligent sensors and advanced computing. Specifically, the task of fruit detection and counting in orchards represents a complex issue that is crucial for efficient orchard management and harvest preparation. Traditional techniques often fail to provide the timely and precise data necessary for these tasks. With the agricultural sector increasingly relying on technological advancements, the integration of innovative solutions is essential. This study presents a novel approach that combines artificial intelligence (AI), deep learning (DL), and unmanned aerial vehicles (UAVs). The proposed approach demonstrates superior real-time capabilities in fruit detection and counting, utilizing a combination of AI techniques and multi-UAV systems. The core innovation of this approach is its ability to simultaneously capture and synchronize video frames from multiple UAV cameras, converting them into a cohesive data structure and, ultimately, a continuous image. This integration is further enhanced by image quality optimization techniques, ensuring the high-resolution and accurate detection of targeted objects during UAV operations. Its effectiveness is proven by experiments, achieving a high mean average precision rate of 86.8% in fruit detection and counting, which surpasses existing technologies. Additionally, it maintains low average error rates, with a false positive rate at 14.7% and a false negative rate at 18.3%, even under challenging weather conditions like cloudiness. Overall, the practical implications of this multi-UAV imaging and DL-based approach are vast, particularly for real-time fruit recognition in orchards, marking a significant stride forward in the realm of digital agriculture that aligns with the objectives of Industry 4.0.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know