A Deep-Learning-Based Algorithm for Landslide Detection over Wide Areas Using InSAR Images Considering Topographic Features
Sensors, ISSN: 1424-8220, Vol: 24, Issue: 14
2024
- 1Citations
- 21Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings from Central South University Broaden Understanding of Sensor Research (A Deep-Learning-Based Algorithm for Landslide Detection over Wide Areas Using InSAR Images Considering Topographic Features)
2024 AUG 13 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- A new study on sensor research is now available.
Article Description
The joint action of human activities and environmental changes contributes to the frequent occurrence of landslide, causing major hazards. Using Interferometric Synthetic Aperture Radar (InSAR) technique enables the detailed detection of surface deformation, facilitating early landslide detection. The growing availability of SAR data and the development of artificial intelligence have spurred the integration of deep learning methods with InSAR for intelligent geological identification. However, existing studies using deep learning methods to detect landslides in InSAR deformation often rely on single InSAR data, which leads to the presence of other types of geological hazards in the identification results and limits the accuracy of landslide identification. Landslides are affected by many factors, especially topographic features. To enhance the accuracy of landslide identification, this study improves the existing geological hazard detection model and proposes a multi-source data fusion network termed MSFD-Net. MSFD-Net employs a pseudo-Siamese network without weight sharing, enabling the extraction of texture features from the wrapped deformation data and topographic features from topographic data, which are then fused in higher-level feature layers. We conducted comparative experiments on different networks and ablation experiments, and the results show that the proposed method achieved the best performance. We applied our method to the middle and upper reaches of the Yellow River in eastern Qinghai Province, China, and obtained deformation rates using Sentinel-1 SAR data from 2018 to 2020 in the region, ultimately identifying 254 landslides. Quantitative evaluations reveal that most detected landslides in the study area occurred at an elevation of 2500–3700 m with slope angles of 10–30°. The proposed landslide detection algorithm holds significant promise for quickly and accurately detecting wide-area landslides, facilitating timely preventive and control measures.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know