Query-Based Multiview Detection for Multiple Visual Sensor Networks
Sensors, ISSN: 1424-8220, Vol: 24, Issue: 15
2024
- 2Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- 1
Most Recent News
University of Washington Researcher Reports on Findings in Sensor Research (Query-Based Multiview Detection for Multiple Visual Sensor Networks)
2024 AUG 13 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Fresh data on sensor research are presented in a
Article Description
In IoT systems, the goal of multiview detection for multiple visual sensor networks is to use multiple camera perspectives to address occlusion challenges with multiview aggregation being a crucial component. In these applications, data from various interconnected cameras are combined to create a detailed ground plane feature. This feature is formed by projecting convolutional feature maps from multiple viewpoints and fusing them using uniform weighting. However, simply aggregating data from all cameras is not ideal due to different levels of occlusion depending on object positions and camera angles. To overcome this, we introduce QMVDet, a new query-based learning multiview detector, which incorporates an innovative camera-aware attention mechanism for aggregating multiview information. This mechanism selects the most reliable information from various camera views, thus minimizing the confusion caused by occlusions. Our method simultaneously utilizes both 2D and 3D data while maintaining 2D–3D multiview consistency to guide the multiview detection network’s training. The proposed approach achieves state-of-the-art accuracy on two leading multiview detection benchmarks, highlighting its effectiveness for IoT-based multiview detection scenarios.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know