Multi-Robot Collaborative Mapping with Integrated Point-Line Features for Visual SLAM
Sensors, ISSN: 1424-8220, Vol: 24, Issue: 17
2024
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
- Mentions1
- News Mentions1
- News1
Article Description
Simultaneous Localization and Mapping (SLAM) enables mobile robots to autonomously perform localization and mapping tasks in unknown environments. Despite significant progress achieved by visual SLAM systems in ideal conditions, relying solely on a single robot and point features for mapping in large-scale indoor environments with weak-texture structures can affect mapping efficiency and accuracy. Therefore, this paper proposes a multi-robot collaborative mapping method based on point-line fusion to address this issue. This method is designed for indoor environments with weak-texture structures for localization and mapping. The feature-extraction algorithm, which combines point and line features, supplements the existing environment point feature-extraction method by introducing a line feature-extraction step. This integration ensures the accuracy of visual odometry estimation in scenes with pronounced weak-texture structure features. For relatively large indoor scenes, a scene-recognition-based map-fusion method is proposed in this paper to enhance mapping efficiency. This method relies on visual bag of words to determine overlapping areas in the scene, while also proposing a keyframe-extraction method based on photogrammetry to improve the algorithm’s robustness. By combining the Perspective-3-Point (P3P) algorithm and Bundle Adjustment (BA) algorithm, the relative pose-transformation relationships of multi-robots in overlapping scenes are resolved, and map fusion is performed based on these relative pose relationships. We evaluated our algorithm on public datasets and a mobile robot platform. The experimental results demonstrate that the proposed algorithm exhibits higher robustness and mapping accuracy. It shows significant effectiveness in handling mapping in scenarios with weak texture and structure, as well as in small-scale map fusion.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know