Generic FPGA Pre-Processing Image Library for Industrial Vision Systems
Sensors, ISSN: 1424-8220, Vol: 24, Issue: 18
2024
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
Sensors, Vol. 24, Pages 6101: Generic FPGA Pre-Processing Image Library for Industrial Vision Systems
Sensors, Vol. 24, Pages 6101: Generic FPGA Pre-Processing Image Library for Industrial Vision Systems Sensors doi: 10.3390/s24186101 Authors: Diogo Ferreira Filipe Moutinho João P. Matos-Carvalho
Most Recent News
Study Results from NOVA University Lisbon Update Understanding of Sensor Research (Generic FPGA Pre-Processing Image Library for Industrial Vision Systems)
2024 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Research findings on sensor research are discussed in a
Article Description
Currently, there is a demand for an increase in the diversity and quality of new products reaching the consumer market. This fact imposes new challenges for different industrial sectors, including processes that integrate machine vision. Hardware acceleration and improvements in processing efficiency are becoming crucial for vision-based algorithms to follow the complexity growth of future industrial systems. This article presents a generic library of pre-processing filters for execution in field-programmable gate arrays (FPGAs) to reduce the overall image processing time in vision systems. An experimental setup based on the Zybo Z7 Pcam 5C Demo project was developed and used to validate the filters described in VHDL (VHSIC hardware description language). Finally, a comparison of the execution times using GPU and CPU platforms was performed as well as an evaluation of the integration of the current work in an industrial application. The results showed a decrease in the pre-processing time from milliseconds to nanoseconds when using FPGAs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know