PlumX Metrics
Embed PlumX Metrics

Re-Parameterization After Pruning: Lightweight Algorithm Based on UAV Remote Sensing Target Detection

Sensors, ISSN: 1424-8220, Vol: 24, Issue: 23
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

Reports Summarize Sensor Research Study Results from Sichuan University of Science & Engineering (Re-Parameterization After Pruning: Lightweight Algorithm Based on UAV Remote Sensing Target Detection)

2024 DEC 20 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- A new study on sensor research is now available.

Article Description

Lightweight object detection algorithms play a paramount role in unmanned aerial vehicles (UAVs) remote sensing. However, UAV remote sensing requires target detection algorithms to have higher inference speeds and greater accuracy in detection. At present, most lightweight object detection algorithms have achieved fast inference speed, but their detection precision is not satisfactory. Consequently, this paper presents a refined iteration of the lightweight object detection algorithm to address the above issues. The MobileNetV3 based on the efficient channel attention (ECA) module is used as the backbone network of the model. In addition, the focal and efficient intersection over union (FocalEIoU) is used to improve the regression performance of the algorithm and reduce the false-negative rate. Furthermore, the entire model is pruned using the convolution kernel pruning method. After pruning, model parameters and floating-point operations (FLOPs) on VisDrone and DIOR datasets are reduced to 1.2 M and 1.5 M and 6.2 G and 6.5 G, respectively. The pruned model achieves 49 frames per second (FPS) and 44 FPS inference speeds on Jetson AGX Xavier for VisDrone and DIOR datasets, respectively. To fully exploit the performance of the pruned model, a plug-and-play structural re-parameterization fine-tuning method is proposed. The experimental results show that this fine-tuned method improves mAP@0.5 and mAP@0.5:0.95 by 0.4% on the VisDrone dataset and increases mAP@0.5:0.95 by 0.5% on the DIOR dataset. The proposed algorithm outperforms other mainstream lightweight object detection algorithms (except for FLOPs higher than SSDLite and mAP@0.5 Below YOLOv7 Tiny) in terms of parameters, FLOPs, mAP@0.5, and mAP@0.5:0.95. Furthermore, practical validation tests have also demonstrated that the proposed algorithm significantly reduces instances of missed detection and duplicate detection.

Bibliographic Details

Yang, Yang; Song, Pinde; Wang, Yongchao; Cao, Lijia

MDPI AG

Chemistry; Computer Science; Physics and Astronomy; Biochemistry, Genetics and Molecular Biology; Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know