Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints
Soil Systems, ISSN: 2571-8789, Vol: 7, Issue: 4
2023
- 4Citations
- 16Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Soil Systems, Vol. 7, Pages 109: Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints
Soil Systems, Vol. 7, Pages 109: Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints Soil Systems doi: 10.3390/soilsystems7040109 Authors: Maffia
Most Recent News
Data on Sustainability Research Published by a Researcher at University of the Mediterranean (Comparative Study of Fertilizers in Tomato-Grown Soils: Soil Quality, Sustainability, and Carbon/Water Footprints)
2023 DEC 26 (NewsRx) -- By a News Reporter-Staff News Editor at Ecology Daily News -- Investigators publish new report on sustainability research. According to
Article Description
This manuscript delves into the pivotal role of sustainable agriculture in addressing environmental challenges and meeting the nutritional demands of a burgeoning global population. The primary objective is to assess the impact of a recently developed eco-friendly fertilizer, denoted as SBO, which arises from the blend of organic and mineral components derived from agricultural waste, sulfur, and residual orange materials. These elements are bound together with bentonite. This study compares SBO with distinct fertilizer treatments, including horse manure (HM) and nitrogen–phosphorous–potassium (NPK), on two diverse tomato-growing soils, each characterized by unique chemical and biological properties. Furthermore, the research extends to evaluate the environmental implications of these fertilizers, with a specific focus on their carbon and water footprints. Soils have been chemically and biochemically analyzed, and carbon and water footprints (CF and WF, respectively) have been assessed. The results reveal substantial enhancements in soil quality with the application of SBO fertilizer. Both soils undergo a transition towards near-neutral pH levels, an increase in organic matter content, and heightened microbial biomass. SBO-treated soils exhibit notably superior enzyme activities. The Life Cycle Assessment (LCA) results affirm the sustainability of the SBO-based system, boasting the lowest CF, while NPK demonstrates the highest environmental impact. Consistently, the WF analysis aligns with these findings, indicating that SBO necessitates the least water for tomato production. In summary, this study underscores the critical importance of adopting sustainable fertilization practices for enhancing soil quality and reducing environmental footprints in agriculture. The promising results offer potential benefits for both food production and environmental conservation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know