A Bayesian network-based integrated for Flood Risk Assessment (InFRA)
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 11, Issue: 13
2019
- 25Citations
- 56Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Sustainability, Vol. 11, Pages 3733: A Bayesian Network-Based Integrated for Flood Risk Assessment (InFRA)
Sustainability, Vol. 11, Pages 3733: A Bayesian Network-Based Integrated for Flood Risk Assessment (InFRA) Sustainability doi: 10.3390/su11133733 Authors: Hongjun Joo Changhyun Choi Jungwook Kim Deokhwan
Article Description
Floods are natural disasters that should be considered a top priority in disaster management, and various methods have been developed to evaluate the risks. However, each method has different results and may confuse decision-makers in disaster management. In this study, a flood risk assessment method is proposed to integrate various methods to overcome these problems. Using factor analysis and principal component analysis (PCA), the leading indicators that affect flood damage were selected and weighted using three methods: the analytic hierarchy process (AHP), constant sum scale (CSS), and entropy. However, each method has flaws due to inconsistent weights. Therefore, a Bayesian network was used to present the integrated weights that reflect the characteristics of each method. Moreover, a relationship is proposed between the elements and the indicators based on the weights called the Integrated Index for Flood Risk Assessment (InFRA). InFRA and other assessment methods were compared by receiver operating characteristics (ROC)-area under curve (AUC) analysis. As a result, InFRA showed better applicability since InFRA was 0.67 and other methods were less than 0.5.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know