Applicability analysis of vegetation condition and dryness for Sand and Dust Storm (SDS) risk reduction in SDS source and receptor region
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 12, Issue: 18
2020
- 5Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Central Asian countries, which are included the Mid-Latitude Region (MLR), need to develop regional adaptive strategies for reducing Sand and Dust Storm (SDS)-induced negative damages based on adequate information and data. To overcome current limitation about data and assessment approaches in this region, the macroscale verified methodologies were required. Therefore, this study analyzed environmental conditions based on the SDS impacts and regional differences of SDS sources and receptors to support regional SDS adaptation plans. This study aims to identify environmental conditions based on the phased SDS impact and regional differences of SDS source and receptor to support regional adaptation plans in MLR. The Normalized Difference Vegetation Index (NDVI), Aridity Index (AI), and SDS frequency were calculated based on satellite images and observed meteorological data. The relationship among SDS frequency, vegetation, and dryness was determined by performing statistical analysis. In order to reflect phased SDS impact and regional differences, SDS frequency was classified into five classes, and representative study areas were selected by dividing source and receptor in Central Asia and East Asia. The spatial analysis was performed to characterize the effect of phased SDS impact and regional distribution differences pattern of NDVI and AI. The result revealed that vegetation condition was negatively correlated with the SDS frequency, while dryness and the SDS frequency were positively correlated. In particular, the range of dryness and vegetation was related to the SDS frequency class and regional difference based on spatial analysis. Overall, the Aral Sea and the Caspian Sea can be considered as an active source of SDS in Central Asia, and the regions were likely to expand into potential SDS risk areas compared to East Asia. This study presents the possibility of potential SDS risk area using continuously monitored vegetation and dryness index, and aids in decision-making which prioritizes vegetation restoration to prevent SDS damages with the macrolevel approach in the MLR perspective.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know