Solid Waste Analysis Using Open-Access Socio-Economic Data
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 14, Issue: 3
2022
- 10Citations
- 71Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nowadays, problems related with solid waste management become a challenge for most countries due to the rising generation of waste, related environmental issues, and associated costs of produced wastes. Effective waste management systems at different geographic levels require accurate forecasting of future waste generation. In this work, we investigate how open-access data, such as provided from the Organisation for Economic Co-operation and Development (OECD), can be used for the analysis of waste data. The main idea of this study is finding the links between socioeconomic and demographic variables that determine the amounts of types of solid wastes produced by countries. This would make it possible to accurately predict at the country level the waste production and determine the requirements for the development of effective waste management strategies. In particular, we use several machine learning data regression (Support Vector, Gradient Boosting, and Random Forest) and clustering models (k-means) to respectively predict waste production for OECD countries along years and also to perform clustering among these countries according to similar characteristics. The main contributions of our work are: (1) waste analysis at the OECD country-level to compare and cluster countries according to similar waste features predicted; (2) the detection of most relevant features for prediction models; and (3) the comparison between several regression models with respect to accuracy in predictions. Coefficient of determination (R), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), respectively, are used as indices of the efficiency of the developed models. Our experiments have shown that some data pre-processings on the OECD data are an essential stage required in the analysis; that Random Forest Regressor (RFR) produced the best prediction results over the dataset; and that these results are highly influenced by the quality of available socio-economic data. In particular, the RFR model exhibited the highest accuracy in predictions for most waste types. For example, for “municipal” waste, it produced, respectively, R = 1 and MAPE = 4.31 global error values for the test set; and for “household” waste, it, respectively, produced R = 1 and MAPE = 3.03. Our results indicate that the considered models (and specially RFR) all are effective in predicting the amount of produced wastes derived from input data for the considered countries.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know