Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 15, Issue: 2
2023
- 3Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Small size construction and demolition waste (CDW) is rarely reused and consequently causes environmental problems. CDW can increase aeration porosity of soil due to the big surface area and water absorption. In order to investigate the feasibility and function of CDW as a component of container substrate, we mixed four small sizes CDW (<10 mm) of 0–3, 3–6, 6–8, and 0–10 mm with clay soil according to the mass ratios of 20%, 35%, and 50% to plant one-year old Duranta repens cuttings, clay soil (CS) and pure CDW (CW) as the controls. Cluster analysis and principal component analysis (PCA) were performed to screen the most suitable particle size and proportion of CDW for plant growth and physiological function. The substrate containing 50% 3–6 mm CDW (S6) had the higher aeration porosity, lower water loss, better water retention and permeability, and therefore higher PCA score. The total branch length of plants in the S6 was increased by 18% and 71%, leaf area by 116% and 444%, and net photosynthetic rate by 10% and 59% compared to CS and CW, respectively. The suitable CDW has potential to improve substrate properties and can effectively improve plant growth. Meanwhile, the reuse of CDW can partially alleviate the problem of construction waste disposal and environmental pollution, and provide reference for the research on the combination of CDW and landscaping.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know