The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 16, Issue: 6
2024
- 8Citations
- 103Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Sustainability, Vol. 16, Pages 2381: The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data
Sustainability, Vol. 16, Pages 2381: The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data
Most Recent News
Research from Sejong University Provides New Study Findings on Machine Learning (The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data)
2024 APR 03 (NewsRx) -- By a News Reporter-Staff News Editor at Climate Change Daily News -- Investigators publish new report on artificial intelligence. According
Article Description
Zero-carbon shipping is the prime goal of the seaborne trade industry at this moment. The utilization of ammonia and liquid hydrogen propulsion in a carbon-free propulsion system is a promising option to achieve net-zero emission in the maritime supply chain. Meanwhile, optimal ship voyage planning is a candidate to reduce carbon emissions immediately without new buildings and retrofits of the alternative fuel-based propulsion system. Due to the voyage options, the precise prediction of fuel consumption and carbon emission via voyage operation profile optimization is a prerequisite for carbon emission reduction. This paper proposes a novel fuel consumption and carbon emission quantity prediction method which is based on the onboard measurement data of a smart ship. The prediction performance of the proposed method was investigated and compared to machine learning and LSTM-model-based fuel consumption and gas emission prediction methods. The results had an accuracy of 81.5% in diesel mode and 91.2% in gas mode. The SHAP (Shapley additive explanations) model, an XAI (Explainable Artificial Intelligence), and a CO consumption model were employed to identify the major factors used in the predictions. The accuracy of the fuel consumption calculated using flow meter data, as opposed to power load data, improved by approximately 21.0%. The operational and flow meter data collected by smart ships significantly contribute to predicting the fuel consumption and carbon emissions of vessels.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know