Estimation of distribution algorithm for energy-efficient scheduling in turning processes
Sustainability (Switzerland), ISSN: 2071-1050, Vol: 8, Issue: 8
2016
- 14Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the increasing concern for the environment, energy-efficient scheduling of the manufacturing industry is becoming urgent and popular. In turning processes, both spindle speed and processing time affect the final energy consumption and thus the spindle speed and scheduling scheme need to be optimized simultaneously. Since the turning workshop can be regarded as the flexible flow shop, this paper formulates a mixed integer nonlinear programming model for the energy-efficient scheduling of the flexible flow shop. Accordingly, a new decoding method is developed for the optimization of both spindle speed and scheduling scheme simultaneously, and an estimation of the distribution algorithm adopting the new decoding method is proposed to solve large-size problems. The parameters of this algorithm are determined by statistics from a simplified practical case. Validation results of the proposed method show that the makespan is shortened to a large extent, and the consumed energy is significantly saved. These results demonstrate the effectiveness of the proposed mathematical model and algorithm.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know