Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test
Surfaces, ISSN: 2571-9637, Vol: 3, Issue: 4, Page: 594-604
2020
- 2Citations
- 5Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, the surfaces of the stainless-steel fibers of the kind primarily utilized in fiber-reinforced composite materials were modified by an acid treatment to increase the interfacial adhesion between the fibers and epoxy resins in composite materials. The interfacial shear strength between the resins and acid-treated fibers was determined by a single fiber microdroplet test, where the resin droplet was located at the center of the fiber. The etching effect at the surface of the fibers increased with the increase in the acid-treatment time. The interfacial shear strength between the stainless-steel fiber and epoxy resin increased with the increase in the specific surface area of contact between the fiber and resin. Furthermore, there was no significant deterioration in the mechanical properties of the stainless-steel fibers with the increase in the surface etching effect. The modification of the surfaces of the stainless-steel fibers by the acid treatment resulted in an increase in the interfacial shear strength between the fibers and resins. Thus, this study demonstrated the possibility of widening the scope of the applications of stainless-steel fiber/epoxy resin composites.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know