Modeling and optimization of gaseous thermal slip flow in rectangular microducts using a particle swarm optimization algorithm
Symmetry, ISSN: 2073-8994, Vol: 11, Issue: 4
2019
- 9Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, pressure-driven flow in the slip regime is investigated in rectangular microducts. In this regime, the Knudsen number lies between 0.001 and 0.1. The duct aspect ratio is taken as 0 ≤ ε ≤ 1. Rarefaction effects are introduced through the boundary conditions. The dimensionless governing equations are solved numerically using MAPLE and MATLAB is used for artificial neural network modeling. Using a MAPLE numerical solution, the shear stress and heat transfer rate are obtained. The numerical solution can be validated for the special cases when there is no slip (continuum flow), ε = 0 (parallel plates) and ε = 1 (square microducts). An artificial neural network is used to develop separate models for the shear stress and heat transfer rate. Both physical quantities are optimized using a particle swarm optimization algorithm. Using these results, the optimum values of both physical quantities are obtained in the slip regime. It is shown that the optimal values ensue for the square microducts at the beginning of the slip regime.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know