Efficient chaotic imperialist competitive algorithm with dropout strategy for global optimization
Symmetry, ISSN: 2073-8994, Vol: 12, Issue: 4, Page: 1-16
2020
- 8Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The imperialist competitive algorithm combined with chaos theory (CICA) demonstrates excellent performance in global optimization problems. However, its computational complexity increases with the introduction of chaotic maps. To address this, we integrate CICA with a dropout strategy that randomly samples the dimensions of each solution at each iteration of the computation. We investigate the potential of the proposed algorithm with different chaotic maps through six symmetric and six asymmetric benchmark functions. We also apply the proposed algorithm to AUVs' path planning application showing its performance and effectiveness in solving real problems. The simulation results show that the proposed algorithm not only has low computational complexity but also enhances local search capability near the globally optimal solution with an insignificant loss in the success rate.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know