Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques
Tropical Medicine and Infectious Disease, ISSN: 2414-6366, Vol: 7, Issue: 9
2022
- 17Citations
- 64Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef13
- Captures64
- Readers64
- 64
Article Description
HIV and AIDS continue to be major public health concerns globally. Despite significant progress in addressing their impact on the general population and achieving epidemic control, there is a need to improve HIV testing, particularly among men who have sex with men (MSM). This study applied deep and machine learning algorithms such as recurrent neural networks (RNNs), the bagging classifier, gradient boosting classifier, support vector machines, and Naïve Bayes classifier to predict HIV status among MSM using the dataset from the Zimbabwe Ministry of Health and Child Care. RNNs performed better than the bagging classifier, gradient boosting classifier, support vector machines, and Gaussian Naïve Bayes classifier in predicting HIV status. RNNs recorded a high prediction accuracy of 0.98 as compared to the Gaussian Naïve Bayes classifier (0.84), bagging classifier (0.91), support vector machine (0.91), and gradient boosting classifier (0.91). In addition, RNNs achieved a high precision of 0.98 for predicting both HIV-positive and -negative cases, a recall of 1.00 for HIV-negative cases and 0.94 for HIV-positive cases, and an F1-score of 0.99 for HIV-negative cases and 0.96 for positive cases. HIV status prediction models can significantly improve early HIV screening and assist healthcare professionals in effectively providing healthcare services to the MSM community. The results show that integrating HIV status prediction models into clinical software systems can complement indicator condition-guided HIV testing strategies and identify individuals that may require healthcare services, particularly for hard-to-reach vulnerable populations like MSM. Future studies are necessary to optimize machine learning models further to integrate them into primary care. The significance of this manuscript is that it presents results from a study population where very little information is available in Zimbabwe due to the criminalization of MSM activities in the country. For this reason, MSM tends to be a hidden sector of the population, frequently harassed and arrested. In almost all communities in Zimbabwe, MSM issues have remained taboo, and stigma exists in all sectors of society.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know