Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method
Universe, ISSN: 2218-1997, Vol: 8, Issue: 1
2022
- 18Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As an important index of solar activity, the 10.7-cm solar radio flux (F ) can indicate changes in the solar EUV radiation, which plays an important role in the relationship between the Sun and the Earth. Therefore, it is valuable to study and forecast F . In this study, the long short-term memory (LSTM) method in machine learning is used to predict the daily value of F . The F series from 1947 to 2019 are used. Among them, the data during 1947–1995 are adopted as the training dataset, and the data during 1996–2019 (solar cycles 23 and 24) are adopted as the test dataset. The fourfold cross validation method is used to group the training set for multiple validations. We find that the root mean square error (RMSE) of the prediction results is only 6.20~6.35 sfu, and the correlation coefficient (R) is as high as 0.9883~0.9889. The overall prediction accuracy of the LSTM method is equivalent to those of the widely used autoregressive (AR) and backpropagation neural network (BP) models. Especially for 2-day and 3-day forecasts, the LSTM model is slightly better. All this demonstrates the potentiality of the LSTM method in the real-time forecasting of F in future.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know