Removal of Manganese(II) from acid mine wastewater: A review of the challenges and opportunities with special emphasis on mn-oxidizing bacteria and microalgae
Water (Switzerland), ISSN: 2073-4441, Vol: 11, Issue: 12
2019
- 73Citations
- 148Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Water, Volume 11, Issue 12 (December 2019): Hydraulics, Hydrology, Water Use and Scarcity, Water Quality, Ecosystems, Management and Governance & More!
It's Water, Volume 11, Issue 12 (December 2019) If you cannot access the articles at this site, click here. Cover Story Article: Diatom Biodiversity in Karst Springs of Mediterranean Geographic Areas with Contrasting Characteristics: Islands vs Mainland Giuseppina G. Lai, Sara Burato, Bachisio M. Padedda, Raffaella Zorza, Elisabetta Pizzul, Cristina...
Review Description
Many global mining activities release large amounts of acidic mine drainage with high levels of manganese (Mn) having potentially detrimental effects on the environment. This review provides a comprehensive assessment of the main implications and challenges of Mn(II) removal from mine drainage. We first present the sources of contamination from mineral processing, as well as the adverse effects of Mn on mining ecosystems. Then the comparison of several techniques to remove Mn(II) from wastewater, as well as an assessment of the challenges associated with precipitation, adsorption, and oxidation/filtration are provided. We also critically analyze remediation options with special emphasis on Mn-oxidizing bacteria (MnOB) and microalgae. Recent literature demonstrates that MnOB can effciently oxidize dissolved Mn(II) to Mn(III, IV) through enzymatic catalysis. Microalgae can also accelerate Mn(II) oxidation through indirect oxidation by increasing solution pH and dissolved oxygen production during its growth. Microbial oxidation and the removal of Mn(II) have been effective in treating artificial wastewater and groundwater under neutral conditions with adequate oxygen. Compared to physicochemical techniques, the bioremediation of manganese mine drainage without the addition of chemical reagents is relatively inexpensive. However, wastewater from manganese mines is acidic and has low-levels of dissolved oxygen, which inhibit the oxidizing ability of MnOB. We propose an alternative treatment for manganese mine drainage that focuses on the synergistic interactions of Mn in wastewater with co-immobilized MnOB/microalgae.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know