PlumX Metrics
Embed PlumX Metrics

Removal of Cd (II) ions from bioretention system by clay and soil wettability

Water (Switzerland), ISSN: 2073-4441, Vol: 13, Issue: 22
2021
  • 4
    Citations
  • 0
    Usage
  • 6
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    4
    • Citation Indexes
      4
  • Captures
    6
  • Mentions
    1
    • Blog Mentions
      1
      • Blog
        1

Article Description

In this work, a silane modifier with benzyl substitutes (OFS-B) and linear substitutes (OFS-L) was used to modify bentonite clay and soil, and the results were characterized by Fourier transform-infrared absorption spectroscopy (FT-IR) and powder-X-ray diffraction (XRD) analysis. A contact angle analysis was performed to determine the wettability of modified clay and soil. The findings revealed that silane-modified OFS-L clay and soil produced wettable surfaces, while OFS-B exhibited hydrophobic properties. These clays and soils were used in a bioretention system for Cd (II) removal. In the study, seven different types of bioretention systems, including natural, OFS-L, and OFS-B modified clay and soil, as well as natural, OFS-L, and OFS-B modified soil, were applied to Cyperus alternifolius plants without an additional layer. The removal capacity of Cd (II) was measured in the following order: modified clay > modified soil > original clay/soil > no layer, i.e., 99.48%, 92.22%, 88.10/78.5%, and 30.0%, respectively. OFS-L removed more Cd (II) than OFS-B during the modification. OFS-L now improves the bioavailability and accumulation of Cd (II) in the plant (18.5 µg/g) and has a higher chlorophyll-b concentration (1.92 mg/g fresh weight) than other systems. The wettable clay exhibited clay leaching into the various levels of the bioretention system. In the bioretention system, benzyl substituted clay prevented the penetration of water and formed a Cd (II) agglomeration. When compared to non-wettable modifiers, these results indicated that wettable clay material could be a capable material for removing Cd (II).

Bibliographic Details

Tong Xu; Jiacheng Yu; Dongjian Cai; Zhaoyang You; Kinjal J. Shah

MDPI AG

Social Sciences; Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know