Determination of water quality characteristics and nutrient exchange flux at the sediment—water interface of the yitong river in changchun city, china
Water (Switzerland), ISSN: 2073-4441, Vol: 13, Issue: 24
2021
- 9Citations
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Water, Volume 13, Issue 24 (December-2 2021) - 183 Articles!
Water, Volume 13, Issue 24 (December-2 2021) To see these papers with abstracts on the website, click here. Cover Story Article: Analysis of Long-Term Shoreline
Article Description
In this paper, the characteristics of water pollution in Yitong River were analyzed by the comprehensive pollution index method. Combined with the pore water concentration gradient method and Fick’s first law, the release characteristics of nutrients at the sediment–water interface of Yitong River (Jilin Province, China) were studied. The results showed that the distribution trend of nitrogen and phosphorus content in the overlying and interstitial water of the Yitong River was the same, and the highest values appeared at the S3 and S5 points in the urban section. The water quality was mainly affected by nitrogen pollutants in domestic sewage. The evaluation results of the water quality comprehensive pollution index showed that the pollution degree of interstitial water in urban areas was much higher than that of the overlying water, and the endogenous nitrogen and phosphorus pollutants had the risk of diffusion to the overlying water. The exchange flux analysis of ammonia nitrogen (NH-N), total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) in water showed that the diffusion flux of NH-N ranged from 0.03 to 6.52 mg·(m, and the sediment was the “source” of ammonia nitrogen pollutants. The range of TDN diffusion flux was −1.57 to 11.6 mg·(m, and the difference between points was large. The sediment was both the “source” and “sink” of nitrogen pollutants. The range of TDP diffusion flux was −0.05 to 0.22 mg·(m. Except for point S8, the TDP diffused from sediment into the water body. Among all the sampling points, the diffusion fluxes of NH-N, TDN, and TDP at the S3 point were the largest, the release rate of endogenous pollutants was the most rapid, and the pollution to the water quality was the most serious. The results are of great significance to the exchange flux of nutrients at the sediment–water interface of rivers and the prevention and control of water eutrophication. It also provides a reference for the study of nutrient exchange flux at the sediment–water interface of rivers and other surface water bodies worldwide.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know