Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan
Water (Switzerland), ISSN: 2073-4441, Vol: 16, Issue: 10
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
The occurrence of high-concentration turbid water due to a large landslide in the upper reaches of the Tedori River Basin in Japan in May 2015 led to a rapid decline in the groundwater levels within the alluvial fan. However, factors other than turbid water, such as changes in precipitation patterns, can have a significant impact on groundwater levels but have not been thoroughly investigated. By analyzing the relationship between river water and groundwater levels, we found that by 2018, conditions had returned to those observed prior to the turbidity events. Regarding seepage, we found that approximately 24% of the Tedori River’s discharge contributed to seepage before the turbidity event. In contrast, during the post-turbidity years, seepage decreased between 2015 and 2017 and returned to the pre-turbidity levels by 2018. Furthermore, by constructing a hydrological model and examining the contributions of turbidity and precipitation, we found that in 2015, turbidity contributed to 76% of the groundwater level changes, whereas precipitation accounted for 24%. In contrast, in 2016, turbidity contributed to 67%, while precipitation contributed to 33%. In essence, the first year was characterized by a significant contribution from turbidity, while precipitation also played a significant role in groundwater level fluctuations in the second year.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know