PlumX Metrics
Embed PlumX Metrics

Wind, Wave, and Ice Impacts on the Coastal Zone of the Sea of Azov

Water (Switzerland), ISSN: 2073-4441, Vol: 17, Issue: 1
2025
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Mentions
    1
    • Blog Mentions
      1
      • Blog
        1

Article Description

The coastal zone of the Sea of Azov is a dynamic environment influenced by various natural and anthropogenic factors, including wind, wave action, beach material removal, and cultivation on cliff edges. The coastal zone of freezing seas is also influenced by ice cover during winter. This study investigates the dynamics of the Sea of Azov’s coastal zone during winter (2014–2023), focusing on the impacts of waves and ice, to identify the most vulnerable coastal areas. We analyzed high-resolution satellite imagery and employed mathematical modeling to obtain data on ice pile-up, fast ice formation, wind patterns, and storm wave dynamics within the shallow coastal zone. Long-term wind data revealed an increase in maximum wind speeds in December and January, while February and March showed a decrease or no significant trend across most coastal observation stations. Storm waves (significant wave height) during the cold season can reach heights of 3.26 m, contributing to coastal erosion and instability. While the overall ice cover in the Sea of Azov is decreasing, with fast ice rarely exceeding 0.85% of the total sea area, ice pile-up still occurs almost annually, with the eastern part of Taganrog Bay exhibiting the highest probability of these events. Our analysis identified the primary impacts affecting the shallow coastal zone of the Sea of Azov between 2014 and 2023. A map was generated to illustrate these impacts, revealing that nearly the entire coastline is subject to varying degrees of wave and ice impact. Exceptions include the eastern coast, which experiences minimal fast ice and ice pile-up, with average or lower dynamic loads, and the southern coast, where wind–wave action is the dominant factor.

Bibliographic Details

Natalia Yaitskaya; Anastasiia Magaeva

MDPI AG

Biochemistry, Genetics and Molecular Biology; Social Sciences; Agricultural and Biological Sciences; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know