Highly Selective Biomimetic Flexible Tactile Sensor for Neuroprosthetics
Research, ISSN: 2639-5274, Vol: 2020, Page: 8910692
2020
- 43Citations
- 48Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations43
- Citation Indexes43
- 43
- CrossRef23
- Captures48
- Readers48
- 48
Article Description
Biomimetic flexible tactile sensors endow prosthetics with the ability to manipulate objects, similar to human hands. However, it is still a great challenge to selectively respond to static and sliding friction forces, which is crucial tactile information relevant to the perception of weight and slippage during grasps. Here, inspired by the structure of fingerprints and the selective response of Ruffini endings to friction forces, we developed a biomimetic flexible capacitive sensor to selectively detect static and sliding friction forces. The sensor is designed as a novel plane-parallel capacitor, in which silver nanowire–3D polydimethylsiloxane (PDMS) electrodes are placed in a spiral configuration and set perpendicular to the substrate. Silver nanowires are uniformly distributed on the surfaces of 3D polydimethylsiloxane microcolumns, and silicon rubber (Ecoflex®) acts as the dielectric material. The capacitance of the sensor remains nearly constant under different applied normal forces but increases with the static friction force and decreases when sliding occurs. Furthermore, aiming at the slippage perception of neuroprosthetics, a custom-designed signal encoding circuit was designed to transform the capacitance signal into a bionic pulsed signal modulated by the applied sliding friction force. Test results demonstrate the great potential of the novel biomimetic flexible sensors with directional and dynamic sensitivity of haptic force for smart neuroprosthetics.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091031605&origin=inward; http://dx.doi.org/10.34133/2020/8910692; http://www.ncbi.nlm.nih.gov/pubmed/33029592; https://spj.science.org/doi/10.34133/2020/8910692; https://dx.doi.org/10.34133/2020/8910692; https://spj.sciencemag.org/journals/research/2020/8910692/
American Association for the Advancement of Science (AAAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know