How Human Activities Affect Groundwater Storage
Research, ISSN: 2639-5274, Vol: 7, Page: 0369
2024
- 12Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Despite the recognized influence of natural factors on groundwater, the impact of human activities remains less explored because of the challenges in measuring such effects. To address this gap, our study proposes an approach that considers carbon emissions as an indicator of human activity intensity and quantifies their impact on groundwater storage. The combination of carbon emission data and groundwater storage data for 17,152 grid cells over 16 years in 4 typical basins shows that they were generally negatively correlated, whereas both agriculture and aviation had positive impacts on groundwater storage. The longest impact from aviation and agriculture can even persist for 7 years. Furthermore, an increase of 1 Yg CO/km per second in emissions from petroleum processing demonstrates the most pronounced loss of groundwater storage in the Yangtze River Basin (approximately 4.1 mm). Moreover, regions characterized by high-quality economic development tend to have favorable conditions for groundwater storage. Overall, our findings revealed the substantial role of human activities in influencing groundwater dynamics from both temporal and spatial aspects. This study fills a crucial gap by exploring the relationship between human activities and groundwater storage through the introduction of a quantitative modeling framework based on carbon emissions. It also provides insights for facilitating empirical groundwater management planning and achieving optimal emission reduction levels.
Bibliographic Details
American Association for the Advancement of Science (AAAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know