PlumX Metrics
Embed PlumX Metrics

Qualitative and quantitative analysis of anti-viral compounds against sars-cov-2 protease enzyme by molecular dynamics simulation and mm/pbsa method

Pharmaceutical Sciences, ISSN: 2383-2886, Vol: 27, Page: S122-S134
2021
  • 2
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Background: A significant worry for global public health is the international spread of the coronavirus disease-19 triggered through the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, an attempt was performed to qualitative and quantitative analysis of a series of compounds against SARS-CoV-2 main protease (M<[pro]) by in silico studies. Methods: About one hundred anti-viral compounds were collected from DrugBank database. In the second stage, molecular docking simulation was carried out to identify interactions of the molecules with the key residues in the M<[pro] active site. Finally, the molecular dynamics simulation (MD) of four top-ranked compounds and X77 as co-crystal ligand were investigated. Results: Based on molecular docking studies, four compounds DB00224, DB00220, DB01232 and DB08873 exhibited the best results among compounds against M<[pro] enzyme. Additionally, molecular dynamic simulation and free binding energy were accomplished to compute the interaction energies and stability of the top-ranked compounds at the active site. The binding energy portions of the compounds into the enzyme active site exposed that Van der Waals and non-polar interactions were fundamental factors in the molecule binding. The ligand connections were steadied via hydrophobic interactions and several key hydrogen bonds especially with Glu166 and His41 residues into the active site. Conclusion: According to calculations of docking and MD, it was observed that the active site is mostly hydrophobic. Additionally, the results showed the steady of selected ligands binding with SARS-CoV-2 M<[pro] active site.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know