INVESTIGATION OF POSSIBILITIES OF USING KERNELS OF LINEAR AR AND ARMA PROCESSES AS DIAGNOSTIC PARAMETERS OF TECHNICAL CONDITION OF ROTARY NODES OF GENERATORS OF WIND TURBINE
Vidnovluvana Energetika, ISSN: 2664-8172, Vol: 2022, Issue: 1, Page: 66-72
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paper considers some methods of diagnosing the technical condition of rotating units of wind turbine generators. It is proposed to use linear processes of autoregression (AR) and auto regression-moving average (ARMA) as mathematical models of vibrations of wind turbine generator units. Such processes belong to linear random processes with discrete time, which have infinitely divisible distribution laws. The peculiarities of such processes are that the autoregression and moving average coefficients are directly related to the kernel of linear random processes with discrete time. This makes it possible to construct recurrent algorithms for estimating the kernels of linear random processes with discrete time. As an example of the use of the proposed approach, the vibration signal of the rotating unit of the rolling bearing of the wind turbine generator USW 56-100 from the side of the main shaft mounted on the stand for testing wind turbines is considered. The speed of rotation of the main shaft was 72 rpm. For the study of vibration signals, a prototype of the wind generator diagnostic system developed at the Institute of electrodynamics of the National Academy of Sciences of Ukraine was used, with the help of which vibration signals were registered and estimates of the kernels of linear random processes were obtained. Different criteria were used to estimate the autoregression parameters, namely, the final prediction error (FPE) and the Henn-Quinn test (HQ). Some parameters of the kernels of linear AR processes are shown, which can be used as diagnostic signs of the technical condition of the units of wind turbine generators.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184669068&origin=inward; http://dx.doi.org/10.36296/1819-8058.2022.1(68).66-72; https://ve.org.ua/index.php/journal/article/view/332; http://dx.doi.org/10.36296/1819-8058.2022.1(68)824; http://dx.doi.org/10.36296/1819-8058.2022.1%2868%29.66-72; https://dx.doi.org/10.36296/1819-8058.2022.1%2868%29.66-72
Vidnovluvana energetika
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know