Visual and Quantitative Analyses of Virus Genomic Sequences using a Metric-based Algorithm
WSEAS Transactions on Circuits and Systems, ISSN: 2224-266X, Vol: 21, Page: 323-348
2022
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
This work aims to study the virus RNAs using a novel accelerated algorithm to explore any-length repetitive genomic fragments in sequences using Hamming distance between the binary-expressed characters of an RNA and a query pattern. Primary attention is paid to the building and analyzing 1-D distributions (walks) of atg-patterns - codon-starting triplets in genomes. These triplets compose a distributed set called a word scheme of RNA. A complete genome map is built by plotting the mentioned atg-walks, trajectories of separate (a-, c-, g-, and t-symbols) nucleotides, and the lines designating the genomic words. The said map can be additionally equipped by gene’s designations making this tool pertinent for multi-scale genomic analyses. The visual examination of atg-walks is followed by calculating statistical parameters of genomic sequences, including estimating walk-geometry deviation of RNAs and fractal properties of word-length distributions. This approach is applied to the SARS CoV-2, MERS CoV, Dengue, and Ebola viruses, whose complete genomic sequences are taken from GenBank and GISAID. The relative stability of these walks for SARS CoV-2 and MERS CoV viruses was found, unlike the Dengue and Ebola distributions that showed an increased deviation of their geometrical and fractal characteristics. The developed approach can be useful in further studying mutations of viruses and building their phylogenic trees.
Bibliographic Details
World Scientific and Engineering Academy and Society (WSEAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know